Multi-Label Learning with Global and Local Label Correlation

نویسندگان

  • Yue Zhu
  • James T. Kwok
  • Zhi-Hua Zhou
چکیده

It is well-known that exploiting label correlations is important to multi-label learning. Existing approaches either assume that the label correlations are global and shared by all instances; or that the label correlations are local and shared only by a data subset. In fact, in the real-world applications, both cases may occur that some label correlations are globally applicable and some are shared only in a local group of instances. Moreover, it is also a usual case that only partial labels are observed, which makes the exploitation of the label correlations much more difficult. That is, it is hard to estimate the label correlations when many labels are absent. In this paper, we propose a new multi-label approach GLOCAL dealing with both the full-label and the missinglabel cases, exploiting global and local label correlations simultaneously, through learning a latent label representation and optimizing label manifolds. The extensive experimental studies validate the effectiveness of our approach on both full-label and missing-label data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Multi-Label Learning by Exploiting Label Correlations Locally

It is well known that exploiting label correlations is important for multi-label learning. Existing approaches typically exploit label correlations globally, by assuming that the label correlations are shared by all the instances. In real-world tasks, however, different instances may share different label correlations, and few correlations are globally applicable. In this paper, we propose the ...

متن کامل

Hierarchical Multi-label Classification using Fully Associative Ensemble Learning

Traditional flat classification methods ( e.g. , binary or multi-class classification) neglect the structural information between different classes. In contrast, Hierarchical Multi-label Classification (HMC) considers the structural information embedded in the class hierarchy, and uses it to improve classification performance. In this paper, we propose a local hierarchical ensemble framework fo...

متن کامل

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

Fully Associative Ensemble Learning for Hierarchical Multi-Label Classification

In Hierarchical Multi-label Classification (HMC), rich hierarchical information is used to improve classification performance. Global approaches learn a single model for the whole class hierarchy [3, 6]. Local approaches introduce hierarchical information to the local prediction results of all the local classifiers to obtain the global prediction results for all the nodes [2, 5]. In this paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1704.01415  شماره 

صفحات  -

تاریخ انتشار 2017